ThesisAuthors: Yuncken, Robert (2006)
If G is a connected Lie group, the Kasparov representation ring KKG(C, C) contains a singularly important element—the 'y-element—which is an idempotent relating the Kasparov representation ring of G with the representation ring of its maximal compact subgroup K. In the proofs of the Baum-Connes conjecture with coefficients for the groups G = SO0(n, 1) ([Kas84]) and G = SU(n, 1) ([JK95]), a key component is an explicit construction of the 'y-element as an element of G-equivariant K-homology for the space G/B, where B is the Borel subgroup of G.
In this thesis, we describe some analytical constructions which may be useful for such a construction of -y in the case of the rank-two Lie group G = SL(3, C). The inspiration is the Bernstein-Gel’fand-Gel’fand complex—a natural differential ...