Browsing by Author Abdallah, Sherief
Showing results [1 - 1] / 1
Reinforcement learning techniques have been successfully used to solve single agent optimization problems but many of the real problems involve multiple agents, or multi-agent systems. This explains the growing interest in multi-agent reinforcement learning algorithms, or MARL. To be applicable in large real domains, MARL al¬gorithms need to be both stable and scalable. A scalable MARL will be able to perform adequately as the number of agents increases. A MARL algorithm is stable if all agents (eventually) converge to a stable joint policy. Unfortunately, most of the previous approaches lack at least one of these two crucial properties.
This dissertation proposes a scalable and stab... |